

CHEMISTRY COACHING CIRCLE

S.C.O. 208 (TF) Sector 24-D, Chandigarh. Ph. No. 0172-2713289 (O).

INORGANIC CHEMISTRY TEST - 1

READ INSTRUCTIONS CAREFULLY

- **1.** The test is of **1 hour** duration.
- 2. The maximum marks are 150.
- 3. This test consists of 50 questions. (Negative Marking)
- 4. For each question you will be **awarded 3 marks** if you have darkened only the bubble corresponding to the correct answer and **zero mark** if no bubbles are darkened. **Minus one (-1) mark** will be awarded for wrong answer
- 1. Among the following, the species that is both paramagnetic and coloured is:
 - a. $[MnO_4]^{2-}$ b. $[TiCl_6]^{2-}$ c. $[VO_4]^{3-}$ d. CrO_2Cl_2
- 2. Which of the following increasing order of oxidizing power is correct for the following specie? VO_2^+ , MnO_4^- , $Cr_2O_7^{2-}$
 - a. $VO_2^+ < Cr_2O_7^{2-} < MnO_4^$ c. $Cr_2O_7^{2-} < VO_2^+ < MnO_4^$ b $VO_2^+ < MnO_4^- < Cr_2O_7^{2-}$ d. $Cr_2O_7^{2-} < MnO_4^- < VO_2^+$
- 3. Select the correct statement.
 - a. In the decomposition of an oxide into oxygen and gaseous metal, entropy increases.
 - b. Decomposition of an oxide is an endothermic change.
 - c. To make ΔG° negative, temperature should be high enough so that $T\Delta S^{\circ} > \Delta H^{\circ}$.
 - d. All are correct statements.
- 4. Main source of lead is galena (PbS). It is converted to Pb by:

(A): PbS
$$\xrightarrow{\text{air}}$$
 PbO + SO₂
 $\stackrel{\Delta}{\longrightarrow}$ Carbon $\xrightarrow{}$ Pb + CO₂

(B): PbS $\xrightarrow{\text{air}}$ PbO + PbS $\stackrel{\Delta}{\longrightarrow}$ Pb + SO₂

Self – reduction process is:

a. A b. B c. Both d. none

- 5. Which of the following statements is incorrect?
 - a. Cassiterite ore of tin contains the impurities of Wol-framite which are separated by electromagnetic separator.
 - b. Tin metal is obtained by the carbon reduction of black tindioxide
 - c. In the extraction of lead from galena, the roasting and self-reduction are carried out in the same furnance at different temperature.
 - d. Reduction agent of haematite in blast-furance is coke in upper part and CO in lower part of furnace.

6.	All the following the group of co (i) Ni(CO) ₄	g complexes shov mplexes having te (ii) K[AgF ₂]	v decrease in t trahedral geom (iii)	heir weights wh hetry is: Na ₂ [Zn(CN) ₄]	en placed in a (iv) K ₂ [PtCl ₄]	magnetic balance (v) [RhCl(PPt	then n ₃) ₃]	
	a. (ii), (iii), (v)	b. (i), (ii), (i	ii)	c. (i), (iii), (iv)	d. (i), (iii)		
7.	Which of the fol	llowing ions is not	identified by Ag	gNO_3 solution?				
	a. F⁻	b. Cl⁻		c. Br [–]		d. Γ		
8.	What would yo solution of AICI	ou observe if you 3?	add with sha	king excess of	dilute NaOH s	solution to an aqu	Jeous	
	a. A permanent b. No change a c. A white ppt. i d. A green ppt.	white ppt. is form t first, but a white s formed which lat which turns red or	ed ppt. is formed o ter dissolves n standing in ai	on standing r				
9.	Which of the fol	llowing reactions of	loes not produc	ce ammonia?				
	a. NH₄NO₃ + K0 c. AIN + dil. HC	OH(aq.) —→ I —→		b. NaNO₃ - d. NH₄NO₂	$+ \text{KOH} \xrightarrow{\text{Zn dus}} (s) \xrightarrow{\Delta}$	t →		
10.	Which of the permanganate	following produc in alkaline pH?	ts are forme	d when potass	ium bromide	reacts with pota	ssium	
	a. BrO ₃ ⁻ , MnO ₂	b. BrO	₄ ⁻ , Mn ²⁺	c. Br ₂ , MnC	D ₂	d. BrO [–] , MnO ₄ ^{2–}		
11.	Which of the peroxodisulpha	following product te $(S_2O_8^{2^-})$?	t is formed	by the reaction	n of mangane	se (II) ions salt	with	
	a. Mn ₂ O ₇	b. Mn ₃	O ₄	c. MnO ₄ ^{2–}		d. MnO ₄ ⁻		
12.	The yellow colo of	our solution of Na_2	CrO ₄ changes	to orange red or	orange red on passing CO ₂ gas due to the formatio			
	a. CrO ₅	b. CrO	3	c. Na ₂ Cr ₂ C	7	d. Cr ₂ O ₃		
13.	Which of the fol	llowing statements	s is incorrect?					
	a. The Ni ²⁺ (a	q) cation is colour	red because N	i ²⁺ ion can absor	rb light, which p	romotes electrons	from	
	b. The Zn ²⁺ (a	aq) cation is colou	rless because t	he d-orbitals are	e completely fille	ed and no electron	s can	
	c. A complex d. none	which has just on	e absorption ba	and at 455 nm (E	Blue), must be re	ed coloured		
14.	Which of the fol	llowing complexes	are diamagne	tic?				
	[Pt (NH ₃) ₄] ²⁺ square planar (i)	[Co(SCN) ₄] ²⁻ tetrahedral (ii)	[Cu(en) ₂] ²⁺ squareplanar (iii)	[Hgl ₄] ^{2–} tetrahedral (iv)				
	a. (i) and (ii)	b. (ii) a	nd (iii)	c. (i) and (i	v)	d. (iii) and (iv)		
15.	The increase in	bond length in CO	D as compared	to carbon mond	xide is due to:			

- a.
- the donation of lone pair of electrons on the carbon into a vacant orbital of the metal atom the donation of a pair of electrons from a filled d-orbital of metal into the vacant antibonding π^* b. orbital of carbon monoxide.
- c. (A) and (B) both
- d. Nóne

16. S₁: [MnCl₆]³⁻, [FeF₆]³⁻ and [CoF₆]³⁻ are paramagnetic having four, five and four unpaired electrons respectively.

S₂: Valence bond theory gives an explanation of colour of coordination compounds.

S₃: The crystal field splitting Δ_0 , depends upon the field produced by the ligand and charge on the metal ion.

a.TTT b.TFT c.FTF d.TFF

17. Which amongst the following metal carbonyls are inner orbital complexes with diamagnetic property?
(I) Ni(CO)₄; (II) Fe(CO)₅; (III) V (CO)₆ (IV) Cr (CO)₆
Select the correct answer from the codes gives below:

- a. I and II only b. II, III and IV only c. II and IV only d. I, II and IV only
- **18.** Which one of the following metal carbonyls involves the d^2sp^3 hybridisation for the formation of metalcarbon σ bond and is paramagnetic.

a. [Cr(CO)₆] b. [V(CO)₆] c. [Mo(CO)₆] d. [W(CO)₆]

19. Which of the following reactions does not occur in Bessemer converter in the extraction of copper from chalcopyrites.

a. $CuCO_3 \xrightarrow{\Delta} CuO + CO_2$	b. FeO + SiO ₂ \longrightarrow FeSiO ₃
c. 2 FeS + $3O_2 \longrightarrow 2FeO + 2SO_2$	d. $Cu_2S + 2 Cu_2O \longrightarrow 6 Cu + SO_2$

- **20.** Silver is extracted from its native ore by:
 - a. formation of soluble complex by dilute solution of NaCN in presence of air followed by the reduction with zinc.
 - b. formation of soluble complex by dilute solution of NaCN in absence of air followed by the reduction with zinc.
 - c. roasting followed by the self reduction.
 - d. roasting followed by the electrolytic reduction.
- **21.** Which of the following is not correctly matched?
 - a. Red bauxite Purification by Serpeck's method.
 - b. Iron from haematite Carbon monoxide reduction.
 - c. Calamine Carbonate ore.
 - d. FeSiO₃ Slag obtained in the extraction of copper
- 22. Which of the following pair of compounds is expected to exhibit same colour in aqueous solution?

a. $FeCl_2$, $CuCl_2$	b. VOCl ₂ , CuCl ₂	c. VOCl ₂ , FeCl ₂	d. FeCl ₂ , MnCl ₂
------------------------	--	--	--

23. Titanium shows magnetic moment of 1.73 BM in its compound. What is the oxidation state of titanium in the compound?

a. +2 b. +1 c. +3 d. +4

- 24. Identify the incorrect statement.
 - a. Mn²⁺ has the highest paramagnetism amongst the bivalent cations of the lst transition series.
 - b. The coloured ions or compounds of transition elements are due to d-d transition, polarization of anion and charge transfer spectrum.
 - c. In 3 d series the paramagnetic character first increase to maximum & then starts decreasing.
 - d. Higher oxidation states are more known for Lanthanide than actinoid.

Dr.	<u>Sangeeta Khanna</u>	<u> </u>					
25.	The IUPAC name of	[Pt(NH ₃) ₄ NO ₂ Cl]SO ₄ is					
	a. tetraaminechlorido c. chloridonitrotetraar	nitro-N-platinum(IV) sulpha mineplatinum(IV) sulphate	ate	b. tetraaminerchlorio d. platinum(IV) tetraa	nitro-O-platinum(IV) sulphate aminenitrochlorido sulphate		
26.	Which of the following	g statements is incorrect?					
	a. All halogens form oxyacids. b. All halogens show -1, +1, +3, +5 and +7 oxidation state c. Hydrofluoric acid forms KHF ₂ , K ₂ F ₂ and attacks glass. d. Oxidising power of halogens follows the order $F_2 > Cl_2 > Br_2 > l_2$						
27.	Copper sulphate solu	ition decolourises on addition	on o	f potassium cyanide d	ue to the formation of		
	a. [Cu(CN) ₄] ^{2–}	b. [Cu(CN) ₄] ³⁻	С	:. Cu(CN) ₂	d. CuCN		
28.	When rain is accomp	anied by a thunderstorm, th	he c	ollected rainwater will	have a pH value		
	a. slightly lower than that of rainwater without thunderstorm b. slightly higher than that when the thunderstorm is not there c. uninfluenced by the occurrence of thunderstorm d. depends upon the amount of dust in air.						
29.	Two compounds pen represent	taamminesulphatocobalt(III	I) br	omide and pentaammi	nesulphatocobalt(III) chloride		
	a. linkage isomerism c. coordination isome	erism	b. ionisation isomerism d. no isomerism				
30.	Which of the following	g molecules has planar stru	uctui	re?			
	a. $N_2F_3^+$	b. NH ₂ OH	c. F	PSCl₃	d. PF ₃ Cl ₂		
31.	In which of the follow maximum? (At. no. o	wing coordination entities t f Co = 27)	the magnitude of Δ_0 (CFSE in octahedral field) will be				
	a. [Co(C ₂ O ₄) ₃] ³⁻	b. [Co(H ₂ O) ₆] ³⁺	c. [[Co(NH ₃) ₆] ³⁺	d. [Co(CN) ₆] ³⁻		
32.	The colour of CuCr ₂ C	D_7 solution in water is green	n bec	cause			
	a. $Cr_2O_7^{2-}$ ions are g	green	b. Cu ²⁺ ions are green				
	c. both $Cr_2O_7^{2-}$ and	Cu ²⁺ ions are green	d. Cu^{2+} ions are blue and $Cr_2O_7^{2-}$ ions are yellow.				
33.	Hydrolysis of PI_3 yield	ds					
	a. a monobasic acid c. a dibasic acid and	and a salt a tribasic acid	 b. a monobasic acid and a dibasic acid d. a monobasic acid and a tribasic acid. 				
34.	Metals of group -12 a	are softer than other transition	on n	netals because:			
	a ama un 10 m - (-) -	have a same literation					

- a. group 12 metals have a cage –like structure
 b. group 12 metals have high ionization energies
 c. s as well as d-electrons take part in metallic bonding
 d. d-electrons do not take part in metallic bonding

30.	Phosphine is not evo	Jivea when					
	a. white phosphorus is boiled with a strong solution of Ba(OH) ₂ b. phosphorous acid is heated c. calcium hypophosphite is heated d. metaphosphoric acid is heated						
36	$Mg \xrightarrow{Air} X + Y \xrightarrow{Heat} X + Y \xrightarrow{Heat} X$ Substances, X, Y, Z	$\xrightarrow{H_2O} Z \xrightarrow{H_2O} Z$ Colourless gas and A are respectively:	$\xrightarrow{\text{O}} \text{Solution} \xrightarrow{\text{CuSO}_4} \text{E}$	(A) Blue colouredsolution			
	a. Mg ₃ N ₂ , MgO, NH ₃ c. MgO, Mg ₃ N ₂ , NH ₃	,, CuSO ₄ . 5H ₂ O , [Cu(NH ₃) ₄]SO ₄	b. Mg(NO ₃) ₂ , MgO, d. Mg(NO ₃) ₂ , MgO ₂ ,	H ₂ , CuSO ₄ . 5H ₂ O H ₂ O ₂ , CuSO ₄ . 5H ₂ O			
37.	The alkali metal whi	ch can emit its outermos	st electron under the influ	ence of even candle light is:			
	a. Na	b. Rb	c. K	d. Cs			
38.	Consider the following	ng abbrevations for hydra	ated alkali metal ions:				
	X = $[Li(H_2O)_n]^+$; Y = $[K(H_2O)_n]^+$; Z = $[Cs(H_2O)_n]^+$ Which is the correct order of size of these hydrated alkali metal ions?						
	a. X > Y > Z	b. Z > Y > X	c. X = Y = Z	d. Z > X > Y			
39.	Which of the following	ng cannot be used for the	e preparation of H_2 ?				
	a. Zn + HCl (dil.) \rightarrow		b. NaH + H₂O –	›			
	c. Zn + HNO₃(dil.) →	•	d. Fe + H ₂ O — steam	\rightarrow			
40	Which of the following	ng on thermal decompos	ition yields a basic as we	Il as an acidic oxide?			
	a. KClO ₃	b. Na ₂ CO ₃	c. NaNO ₃	d. CaCO ₃			
41.	II. In the given reactions, $Na_2B_4O_7 \cdot 10H_2O \xrightarrow{\Delta} NaBO_2 + (P) + H_2O$ $(P) + MnO \xrightarrow{\Delta} (Q)$ (P) and (Q) are respectively						
	a. Na ₃ BO ₃ , MN ₃ (BO ₃ c. B ₂ O ₃ , Mn(BO ₂) ₂	3)2	b. Na₂(BO₂)₂, M d. None of the a	n(BO ₂) ₂ above			
42	Phosphine, acetylen	e and ammonia can be f	formed by treating water	with			
	a. Mg ₃ P ₂ , Al ₄ C ₃ , Li ₃ N c. Ca ₃ P ₂ , CaC ₂ , CaN	I ICN	b. Ca ₃ P ₂ , CaC ₂ , d. Ca ₃ P ₂ , MgC ₂ ,	Mg(NO ₃) ₂ NH ₄ NO ₃			
43.	A Metal M readily fo	rms water soluble sulpha	ate MSO ₄ , water insoluble	e hydroxide $M(OH)_2$ and oxide			

MO which becomes inert on heating. The hydroxide is soluble in NaOH. The metal M is

a. Be	b. Mg	c. Ca	d. Sr

44. Hydride of boron occurs as B_2H_6 but B_2Cl_2 does not exist. This is because

- a. $p\pi$ -d π back bonding is possible in B_H6 but not in B₂Cl₆
- b. boron and hydrogen have almost equal values of electronegativity
- c. boron and chlorine have almost equal atomic sizes
- d. small hydrogen atoms can easily fit in between boron atoms but large chlorine atoms do not.
- **45.** For one of the element various successive ionisation energies (in kJ mol⁻¹) are given below:

Ionisation energy	1 st	2 nd	3 rd	4 th	5 th
0.	577.5	1810	2750	11580	14820

The element is

a. magnesium b. aluminium c. silicon

d. phosphorus

46. Match the list I with List II and select the correct answer using the code given below the lists:

					List – I										Lis	st – II				
Ρ.		Clar	⁻k's r	nethod							1.	N	a ₆ P6	O ₁₈						
Q.		Calo	gon's	s metho	od						2.	N	aAIS	iO ₄						
R.	. Ion – exchange method						3.	R	SO₃ŀ	4										
S.	S. Synthetic resins method					4.	С	a(O⊦	-) ₂											
a.	P 3	Q 4	R 1	S 2	b.	P 2	Q 1	R 4	S 3		C.	P 4	Q 1	R 2	S 3	d.	P 4	Q 3	R 2	S 1

47. Match List I with List II and select the correct answer using the code given below the lists:

		List I		List II
	1.	Heavy water	(a)	Bicarbonates of Mg of and Ca in water
	2.	Temporary hard water	(b)	No foreign ions in water
	3.	Soft water	(c)	D_2O
	4.	Permanent hard water	(d)	Sulphates and chlorides of Mg and Ca in water
	Co	des:		
	а. ′	1 – c, 2 – d, 3 – b, 4 – a		b. 1 – b, 2 – a, 3 – c, 4 – d
	C . 1	1 – b, 2 – d, 3 – c, 4 – a		d. 1 – c, 2 – a, 3 – b, 4 – d
48.	١n ١	which of the following arrangeme	ents the orde	r is not according to the property indicated against it?

- a. $AI^{3+} < Mg^{2+} < Na^+ < F^-$ increasing ionic size
- b. B < C < N < O increasing first ionisation energy
- c. I < Br < F < CI increasing electron gain entablpy (with negative sign)
- d. Li < Na < K < Rb increasing metallic radius
- **49.** An alkali metal hydride (NaH) reacts with diborane in Y to give a tetrahedral compound Z which is extensively used as reducing agent in organic synthesis. The Y and Z respectively are
 - a. C_2H_6 , C_2H_5Na b. $(C_2H_5)_2O$, NaBH₄ c. NH₃, $B_3N_3H_6$ d. C_3H_8 , C_3H_7Na
- 50. Which one of the following statements about the zeolites is false?
 - a. They are used as cation exchangers.
 - b. They have open structure which enables them to take up small molecules
 - c. Zeolites are aluminosilicates having three dimensional network.
 - d. Some of the SiO₄⁴⁻ units are replaced by AlO₄⁵⁻ and AlO₆⁹⁻ ions in zeolites

32.	D		electron is from the stable configuration $AI^{3+}(2s^2,$
Sol.	$CuCr_2O_7$ solution is green because Cu^{2+} ions		2p ⁶), hence aluminium is the element.
	are blue and $Cr_2O_7^{2-}$ ions are yellow in aqueous	46 .	C
	medium. Both blue and yellow colours mix up to	47. Sol	\mathbf{D} Heavy water $-\mathbf{D}_{\mathbf{A}}$
	give green colour.	501.	Temporary Hard water – Bicarbonates of Mg/Ca
33.	В		in water
Sol.	$PI_3 + 3H_2O \longrightarrow H_3PO_3 + 3H_3H_3$		Soft water – No foreign ions in water
	Dibasic Monobasic acid acid		Permanent hard water - Sulphates and
34.	D		chlorides of Mg/Ca in water
Sol.	Metals of group-12 are softer than other		Soft water – No foreign ions in water
	transition metals due to comparatively weak		epideridae of Ma/Ca in water – Sulphates and
	metallic bond since their d-electrons do not take	48	B
~ -	part in metallic bonding.	Sol.	As we move from left to right across a period.
35.	D 36. C		ionisation enthalpy increases with increasing
37. Sal	D Co because of its law IE amits electron under		atomic number. So the order of increasing
301.	the influence of even conduction the		ionisation enthalpy should be $B < C < N < O$.
20			But N(1s ² 2s ² 2p ³) has a stable half filled
so. Sol	Smaller the cation greater is the degree of		of nitrogen is greater than oxygen
001.	hydration decreases from Li^+ to Cs^+ .		So, the correct order of increasing first ionisation
39.	Ċ		enthalpy is $B < C < O < N$
Sol.	$4Zn+10HNO_{3}(dil.) \longrightarrow 4Zn(NO_{3})_{2} + N_{2}O + 5H_{2}O$	49.	B
40.	D	Sol.	$.2NaH + B_2H_6 \xrightarrow{(C_2H_5)_2O} 2NaBH_4$
Sol.	$CaCO_3 \xrightarrow{\Delta} CaO_+ CO_2$		Y Z
	(basic) (acidic)	50.	D
41.	C A		
Sol.	$Na_{2}B_{4}O_{7} \cdot 10H_{2}O \xrightarrow{\Delta} 2NaBO_{2} + B_{2}O_{3}(P) + 10H_{2}O$		
	$B_2O_3 + MnO \xrightarrow{\Delta} Mn(BO_2)_2$		
	(P) (Q)		
42.	C		
Sol.	$Ca_{3}P_{2} + 6H_{2}O \longrightarrow 3Ca(OH)_{2} + 2PH_{3}$		
	$CaNCN + 2H_2O \longrightarrow Ca(OH)_2 + C_2H_2$		
	$CaNCN + 3H_2O \longrightarrow CaCO_3 + 2NH_3$		
43.			
501.	. The metal M is Be. Its oxide BeO has high		
	to form sodium bervilate		
	$Be(OH)_2 + 2NaOH \rightarrow Na_2[Be(OH)_4]$		
	Sodium berry llate		
	$BeSO_4$ is highly soluble in water. $Be(OH)_2$ is		
	insoluble in water		
44. Sal	U Tribolidos of P are slastron deficient compounds		
301.	and do not exist as dimers B-H, has different		
	types of bonding in which two H atoms act as		
	bridged atoms.		
45.	B		
Sol.	3 ^{ra} ionisation energy = 2750 kJ/mol		
	4th ionisation nergy = 11580 kJ/mol		
	an ionisation energy is much hiener than 3rd ionisation energy it means removal of 4th		